Supplementary Data: Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences
نویسندگان
چکیده
منابع مشابه
Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences
Position weight matrices (PWMs) are the standard model for DNA and RNA regulatory motifs. In PWMs nucleotide probabilities are independent of nucleotides at other positions. Models that account for dependencies need many parameters and are prone to overfitting. We have developed a Bayesian approach for motif discovery using Markov models in which conditional probabilities of order k - 1 act as ...
متن کاملThe Next Generation of Transcription Factor Binding Site Prediction
Finding where transcription factors (TFs) bind to the DNA is of key importance to decipher gene regulation at a transcriptional level. Classically, computational prediction of TF binding sites (TFBSs) is based on basic position weight matrices (PWMs) which quantitatively score binding motifs based on the observed nucleotide patterns in a set of TFBSs for the corresponding TF. Such models make t...
متن کاملSiTaR: a novel tool for transcription factor binding site prediction
MOTIVATION Prediction of transcription factor binding sites (TFBSs) is crucial for promoter modeling and network inference. Quality of the predictions is spoiled by numerous false positives, which persist as the main problem for all presently available TFBS search methods. RESULTS We suggest a novel approach, which is alternative to widely used position weight matrices (PWMs) and Hidden Marko...
متن کاملFrom binding motifs in Chip-seq Data to Improved Models of transcription factor binding Sites
Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) became a method of choice to locate DNA segments bound by different regulatory proteins. ChIP-Seq produces extremely valuable information to study transcriptional regulation. The wet-lab workflow is often supported by downstream computational analysis including construction of models of nucleotide sequences of transcription fa...
متن کاملPoly(A) motif prediction using spectral latent features from human DNA sequences
MOTIVATION Polyadenylation is the addition of a poly(A) tail to an RNA molecule. Identifying DNA sequence motifs that signal the addition of poly(A) tails is essential to improved genome annotation and better understanding of the regulatory mechanisms and stability of mRNA. Existing poly(A) motif predictors demonstrate that information extracted from the surrounding nucleotide sequences of cand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016